The Histochemistry of Particulate Emissions on the Lung Tissues of Albino Mice
More details
Hide details
Egerton University, KENYA
Online publish date: 2017-11-20
Publish date: 2017-11-20
European J Hlth Biol 2017;6(2):em3
Background: Particulate emissions produced from the combustion of diesel, tyre burning and forest fire is known to contain organic toxicants and a variety of reactive radical species which may cause serious respiratory health problems such as asthma. Materials and methods: The particulate emissions from tyre burning, vehicular exhaust, and simulated forest fire were exposed to an inhalation cage. To simulate environmental exposure conditions, 12-week old albino mice were exposed to particulate emissions at a rate of ~ 250 μgm-3day-1 and their lung tissues were extracted for bioassay analyses. Comparisons were made between the lung tissues of mice exposed to the three types of particulate emissions, and the control mouse in order to determine the biological impact of particulates on the functioning of the lung tissues. Results: Accordingly, there was swelling and shrinking of lung tissue cells as a result of exposure to tyre and diesel exhaust particulate emissions which caused disconnection of tissues and damage to the blood capillaries within the lung alveoli. Conclusion: Simulated forest fire particulates caused minimum damage to the lung tissues whereas particulate emissions from diesel and tyre caused grave damage to the lung system of the mice.
1. Adamson, I. Y., Vincent, R., & Bjarnason, S. G. (1999). Cell injury and interstitial inflammation in rat lung after inhalation of ozone and urban particulates. American journal of respiratory cell and molecular biology, 20(5), 1067-1072.
2. Barile, F. A. (2013). Principles of toxicology testing. Florida, U.S.: CRC Press.
3. Bhanothu, V., Theophilus, J., Rozati, R., Badhini, P., Vijayalaxmi, B., & Reddy, K. (2012). Review on Recent Aspects of Biochemical, Cellular, Physiological Markers and Environmental Factors Associated with Acute Lung Inflammation & Injury (ALI). American Journal of Biochemistry, 2(5), 74-88.
4. Bølling, A. K., Pagels, J., Yttri, K. E., Barregard, L., Sallsten, G., Schwarze, P. E., & Boman, C. (2009). Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties. Particle and fibre toxicology, 6(1), 1.
5. Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., & Mittleman, M. A. (2010). Particulate matter air pollution and cardiovascular disease an update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331-2378.
6. Brunekreef, B., & Forsberg, B. (2005). Epidemiological evidence of effects of coarse airborne particles on health. European Respiratory Journal, 26(2), 309-318.
7. Chaturvedi, A. K. (2010). Aviation Combustion Toxicology: An Overview. Journal of Analytical Toxicology, 34, 3-16.
8. Delfino, R. J., Sioutas, C., & Malik, S. (2005). The potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environmental health perspectives, 934-946.
9. Dellinger, B., Pryor, W. A., Cueto, R., Squadrito, G. L., Hegde, V., & Deutsch, W. A. (2001). Role of free radicals in the toxicity of airborne fine particulate matter. Chemical Research in Toxicology, 14(10), 1371-1377.
10. Goodman, J. R. (2015). The Association for Assessment and Accreditation of Laboratory Animal Care International Fails to Meaningfully Address Concerns Regarding Its Accreditation Program. Journal of Applied Animal Welfare Science, 18(3), 314-315.
11. Gwaze, P., Schmid, O., Annegarn, H., Andreae, M., Huth, J., & Helas, G. (2006). Comparison of three methods of fractal analysis applied to soot aggregates from wood combustion. J Aerosol Sci, 37, 820-838.
12. Jayaraman, A., Beig, G., Kulshrestha, U., Lahiri, T., Ray, M., Satheesh, S., & Venkataraman, C. (2010). Atmospheric Composition Change and Air Quality Global Environmental Changes in South Asia (pp. 171-221), Springer.
13. Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric environment, 60, 504-526.
14. Ko, F. W., & Hui, D. S. (2012). Air pollution and chronic obstructive pulmonary disease. Respirology, 17(3), 395-401.
15. Konert, M., & Vandenberghe, J. (1997). Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology, 44(3), 523-535.
16. Kreyling, W. G., Semmler-Behnke, M., & Moller, W. (2006). Ultrafine particle-lung interactions: does size matter? Journal of Aerosol Medicine, 19(1), 74-83.
17. Landsiedel, R., Sauer, U. G., Ma-Hock, L., Schnekenburger, J., & Wiemann, M. (2014). Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays and in vivo inhalation or instillation studies. Nanomedicine, 9(16), 2557-2585.
18. Li, N., Xia, T., & Nel, A. E. (2008). The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radical Biology and Medicine, 44(9), 1689-1699.
19. Lippmann, M., & Schlesinger, R. (2002). Toxicological basis for the setting of health-related air pollution standards. Annual review of public health, 21(1), 309-333.
20. Luh, P., & Chiang, C. (2007). Acute lung injury/acute respiratory distress syndrome (ALI/ARDS): the mechanism, present strategies and future perspectives of therapies. J Zhejiang Univ Sci, 8, 60-69.
21. Mirowsky, J., Hickey, C., Horton, L., Blaustein, M., Galdanes, K., Peltier, R. E., & Nadas, A. (2013). The effect of particle size, location and season on the toxicity of urban and rural particulate matter. Inhalation toxicology, 25(13), 747-757.
22. Morrison, R., & Bidani, A. (2002). Acute respiratory distress syndrome epidemiology and pathophysiology. Chest Surg Clin N Am., 12, 301-323.
23. Murphy Jr, G., Rouse, R. L., Polk, W. W., Henk, W. G., Barker, S. A., Boudreaux, M. J., & Penn, A. L. (2008). Combustion-derived hydrocarbons localize to lipid droplets in respiratory cells. American journal of respiratory cell and molecular biology, 38(5), 532-540.
24. O’Connor, G. T., Neas, L., Vaughn, B., Kattan, M., Mitchell, H., Crain, E. F., & Stout, J. (2008). Acute respiratory health effects of air pollution on children with asthma in US inner cities. Journal of Allergy and Clinical Immunology, 121(5), 1133-1139.
25. Perez-Padilla, R., Schilmann, A., & Riojas-Rodriguez, H. (2010). Respiratory health effects of indoor air pollution. The International Journal of Tuberculosis and Lung Disease, 14(9), 1079-1086.
26. Pinkerton, K. E., & Joad, J. P. (2000). The mammalian respiratory system and critical windows of exposure for children’s health. Environmental health perspectives, 108(Suppl 3), 457.
27. Poynton, S. D., Slade, R. C. T., Omasta, T. J., Mustain, W. E., Escudero-Cid, R., Oc´onb, P., & Varcoe, R. J. (2014). Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells. Journal of Materials Chemistry A, 2, 5124-5130.
28. Pryor, W. A., Stone, K., Zang, L. Y., & Bermudez, E. (1998). Fractionation of aqueous cigarette tar extracts: Fractions that contain the tar radical cause DNA damage. Chemical Research in Toxicology, 11(5), 441-448.
29. Schwarze, P., Øvrevik, J., Låg, M., Refsnes, M., Nafstad, P., Hetland, R., & Dybing, E. (2006). Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Human & experimental toxicology, 25(10), 559-579.
30. Sexton, K., Linder, S. H., Marko, D., Bethel, H., & Lupo, P. J. (2007). Comparative assessment of air pollution-related health risks in Houston. Environmental health perspectives, 1388-1393.
31. Townsley, M. I. (2012). Structure and composition of pulmonary arteries, capillaries, and veins. Comprehensive Physiology.
32. Witschi, H. (2000). Environmental agents altering lung biochemistry. Fed Proc, 36(5), 1631-1634.
33. Xi, J., & Zhong, B. J. (2006). Soot in diesel combustion systems. Chemical engineering & technology, 29(6), 665-673.
34. Yu, M., Zheng, X., Witschi, H., & Pinkerton, K. E. (2012). The role of interleukin-6 in pulmonary inflammation and injury induced by exposure to environmental air pollutants. Toxicological Sciences, 68(2), 488-497.